

Gravity Sample problem: The space shuttle, with a mass of 5 million kg, in a 300-km-high orbit wants to capture a smaller satellite (mass of 5,000 kg) for repairs. What is the speed of the shuttle? What is the speed of the satellite?

Physics 215 - Fall 2019

Lecture 13-1 16

Simple Harmonic Oscillator

Differential equation for x(t): $m \frac{d}{dt} \left(\frac{dx}{dt} \right) = -kx$ Solution: $x(t) = A\cos(\omega t + \phi)$ $\frac{dx}{dt} =$ $\frac{d}{dt} \left(\frac{dx}{dt} \right) =$

• Simple harmonic motion: ω is the angular frequency

– Also sinusoidal motion with SAME T = 2 π/ω

Lecture 13-1 21

Physics 215 - Fall 2019

