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lecture notes:



What are the linear low-energy excitations?

• Crystalline solid
• Spatially extended phonons are the low-frequency excitations

• Goldstone’s theorem: broken continuous symmetries generate low-energy long-
wavelength excitations

• Caveat: in crystals with defects, there are resonant modes at the defects

• Disordered solids
• What are the low-energy excitations?
• Are they extended or localized?



very low frequencies

quasi-localized plane-wave-like hybrids

boson peak
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FIG. 1. (Color online) Sample snapshots of the system in the
liquid phase (φ = 0.6, left) and in the jammed phase (φ = 0.95,
right) for v0 = 0.025. The glued boundary is shown in dark gray. The
red (dark gray) arrows represent the instantaneous velocity field, with
v = v0 corresponding to an arrow of length 1 in units of the particle
diameter. Please see Supplemental Material [23] for movies of these
two runs.

dynamics [24]. Such polarization is not, however, permanent,
but rather it is actively regulated by both biochemical pro-
cesses inside the cell and feedback from neighboring cells.
Finally, we define dimensionless quantities by scaling all
lengths with the average radius a of the spheres and all
times with the lag time τ . Additionally, we fix µk = 10 and
σ = 10−1.

Using this model, we perform molecular dynamics sim-
ulations with Nt = 64 to 10 000 particles. Unless otherwise
specified, we show results for Nt = 1000 particles. To elimi-
nate the global translational mode obtained at high density in
an open system, we confine the particles to a circular box of
radius R with soft repulsive boundary conditions. These are
implemented by “gluing” a row of soft spheres to the box’s
boundary, as shown in Fig. 1. We explore the phase diagram by
varying the self-propulsion speed v0 and the packing fraction
φ =

∑
i a

2
i /R

2.
We first characterize the state of the system by studying

the mean-square displacement (MSD) of individual particles
as a function of time, shown on the left side of Fig. 2.
At low packing fraction or high velocity, the MSD grows
monotonically well beyond a, corresponding to a flowing

FIG. 2. (Color online) Left: Mean-square displacement vs time
as a function of density at v0 = 0.025, showing a transition from
rotational diffusion at low φ, to polar alignment for φ < 0.8 and to
the jammed state around φ = 0.842. Right: Phase diagram in the φ-v0

plane, showing the transition from the liquid state (blue or light gray)
to the solid state (red or dark gray). The dots are simulated (φ,v0)
pairs shaded white to black proportional to the fraction of jammed
runs.

system. Conversely, at high φ or low v0, the MSD is bounded
and smaller than a, i.e., the particles are trapped in the cage
formed by their neighbors. Typical snapshots of the system
in each phase are shown in Fig. 1. At v0 = 0, the angular
degree of freedom ψi becomes irrelevant and the problem
is equivalent to the athermal jamming of soft spheres. The
transition between a flowing phase and a trapped one at very
low v0 is consistent with this limit; in particular, the critical
packing fraction coincides with the expected value φc ≈ 0.842.
By extension, we call the two active phases “liquid” and
“jammed,” respectively. The shape of the (φ,v0) phase diagram
as inferred from the MSD is shown on Fig. 2 (right).

The liquid phase can be further divided by noting that
the behavior of the MSD is not uniform. At very low
density, interactions are negligible and each particle inde-
pendently performs a persistent random walk, with ⟨[r(t) −
r(0)]2⟩ = (4v2

0/σ
2)[t + (2/σ 2)(e−σ 2t/2 − 1)] and a crossover

from ballistic behavior ⟨[r(t) − r(0)]2⟩ ∼ v2
0 t

2 for t ≪ σ−2 to
diffusive behavior ⟨[r(t) − r(0)]2⟩ ∼ (4v2

0/σ
2)t for t ≫ σ−2.

Here, σ−2 = 102 and ballistic behavior is observed at all but
the longest times (but shorter than the limit imposed by the
box size, not shown on Fig. 2), as expected for individual
self-propelled particles [25]. At intermediate density, however,
clusters of aligned particles start to form and the MSD remains
ballistic at all observed times. This behavior is reminiscent
of those observed in other active systems [10,11]. Another
signature of the symmetry breaking introduced by the active
velocity in the liquid phase is the existence of “giant number
fluctuations” [6,7,12,26]. The scaling of the standard deviation
%N of the number of particles with the average number of
particles N in subsystems of various sizes is shown in Fig. 3.
We see a transition from %N ∼ N1/2, as expected in an ideal
gas or in a passive thermal liquid, to %N ∼ Nα with α > 1/2
at packing fraction φ ∼ 0.5, consistent with the change of
behavior observed in the MSD and with previous observations
on self-propelled systems [6,7,12,26].

In the jammed phase, we observe regular oscillations of the
particle displacements around their mean positions, resulting

FIG. 3. (Color online) Scaled number fluctuations for Nt =
10 000 and a cut through the phase diagram at v0 = 0.025. We
observe three regimes: gaslike fluctuations at low density (green,
top three curves), giant number fluctuations at intermediate density
(red, middle five curves), and strongly suppressed fluctuations in the
jammed phase (blue, bottom curves). The dashed line corresponds to
%N/N 1/2 = 1.
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Dynamical heterogeneities 

Displacement profile in 
simulation of a 2-d glass former. 
Berthier PRL 2011

A colloidal glass.



Four point correlation functions:
captures “swirls” or “dynamical heterogeneities”

Supercooled liquids
Simulations, measurement and theories of 4-
point susceptibility [5-9]

This correlation function is 
related to a susceptibility

Compare to the overlap function 
of spin glasses 

Compare to ferromagnet
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Four point correlation functions

Abate and Durian PRE 2007



Henkes et al PRE 2011



Isostaticity and Diverging Length Scale

• For system at φc, Z=2d

•Removal of one bond makes entire 
system unstable by adding one soft 
mode

• This implies diverging length as φ-> φc+

For φ > φc, cut bonds at boundary of circle of size L
Count number of soft modes within circle 

Define length scale at which soft modes just appear 
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Ns ≈ L
d−1 − Z − Zc( )Ld
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 ≈
1

Z − Zc

≈ φ −φc( )−0.5

M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)


