Boulder Condensed Matter Summer School Theoretical Biophysics

Active Living Matter + Tissue Mechanics July 15-19, 2019

Lisa Manning Department of Physics Biolnspired Institute Syracuse University

lecture notes:

What are the linear low-energy excitations?

- Crystalline solid
- Spatially extended phonons are the low-frequency excitations
- Goldstone's theorem: broken continuous symmetries generate low-energy longwavelength excitations
- Caveat: in crystals with defects, there are resonant modes at the defects
- Disordered solids
- What are the low-energy excitations?
- Are they extended or localized?

very low frequencies

boson peak

Dynamical heterogeneities

A colloidal glass.

Displacement profile in simulation of a 2-d glass former. Berthier PRL 2011

Four point correlation functions:
captures "swirls" or "dynamical heterogeneities"

$$
=<\rho\left(r^{\prime}, t^{\prime}\right) \rho\left(r^{\prime}, t\right) \rho\left(r, t^{\prime}\right) \rho(r, t)>
$$

$$
Q_{t}(l, \tau)=\frac{1}{N} \sum_{i=1}^{N} w_{i}, \quad w_{i}= \begin{cases}1, & \text { overlap }>l \\ 0, & \text { overlap }<l\end{cases}
$$

$1=1 / 2 d$

Four point correlation functions

$$
\begin{aligned}
& Q_{t}(l, \tau)=\frac{1}{N} \sum_{i=1}^{N} w_{i}, \\
& Q(l, \tau)=\left\langle Q_{t}(l, \tau)\right\rangle,
\end{aligned}
$$

Henkes et al PRE 2011

Isostaticity and Diverging Length Scale

M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

- For system at $\phi_{c}, Z=2 d$
- Removal of one bond makes entire system unstable by adding one soft mode
- This implies diverging length as $\phi->\phi_{c}$

For $\phi>\phi_{c}$, cut bonds at boundary of circle of size L Count number of soft modes within circle

$$
N_{s} \approx L^{d-1}-\left(Z-Z_{c}\right) L^{d}
$$

Define length scale at which soft modes just appear

$$
\ell \approx \frac{1}{Z-Z_{c}} \approx\left(\phi-\phi_{c}\right)^{-0.5}
$$

