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Abstract –The density of vibrational states for glasses and jammed solids exhibits universal
features, including an excess of modes above the Debye prediction known as the boson peak located
at a frequency ω∗. We show that the eigenvector statistics for boson peak modes are universal, and
develop a new definition of the boson peak based on this universality that displays the previously
observed characteristic scaling ω∗ ∼ p−1/2. We identify a large new class of random matrices that
obey a generalized global tranlational invariance constraint and demonstrate that members of this
class also have a boson peak with precisely the same universal eigenvector statistics. We denote
this class as Boson Peak random matrices, and conjecture it comprises a new universality class.
We characterize the eigenvector statistics as a function of coordination number, and find that one
member of this new class reproduces the scaling of ω∗ with coordination number that is observed
near the jamming transition.

The normal modes of vibration provide a starting point
for understanding the mechanical and thermal response of
solids. In both glasses and crystals, the lowest frequency
modes are long-wavelength sound modes, and therefore
the density of states D(ω) exhibits Debye scaling, ωd−1,
where d is the number of spatial dimensions. In glasses,
this scaling is interrupted by a universal band of modes
called the boson peak, and these modes play a key role in
determining the unique thermal properties of disordered
solids [1–3] and their plasticity [4–7].

The boson peak is typically defined as an excess of
modes above the Debye prediction [1], but this definition is
not precise. While several authors identify the boson peak
frequency ω∗ as the value that maximizesD(ω)/ωd−1 [8,9],
others identify ω∗ as the frequency at which D(ω) reaches
a quarter or half its maximum value [3, 10, 36]. Unfortu-
nately, these definitions can generate different scalings for
ω∗ [11].

In addition, while the boson peak consists of a large
band of modes, the existing definitions of ω∗ identify only
the lowest frequency at which these modes start to appear.
Perhaps the most disturbing aspect of these definitions,
however, is that an excess of modes above the Debye pre-
diction is not unique to disordered solids; even perfectly
crystalline materials exhibit such an excess [12–14], typ-

ically near a van Hove singularity. We therefore seek a
more robust definition of the boson peak.

The normal modes of vibration of a solid are eigen-
vectors of the dynamical matrix M [12]. For amorphous
solids, M is disordered, suggesting that some of its proper-
ties can be understood from random matrix theory. Ran-
dom matrices have proven useful in many contexts [15,16]
because they yield insight into the most general condi-
tions needed to capture a given behavior. For example,
the eigenvalue spacings for jammed packings of particles
are consistent with those of a general class of random ma-
trices, the Gaussian Orthogonal Ensemble (GOE) [10,17],
in which elements are drawn from a Gaussian distribution
to form a symmetric matrix [18]. More complicated en-
sembles, including positive definite [19, 20] and Euclidean
Random Matrix (ERM) [21–25] ensembles capture addi-
tional universal features, including phonon-like modes at
the lowest frequencies and the existence of a boson peak.
ERM ensembles, based on pairwise interactions between
randomly distributed points, also correctly predict that
the boson peak shifts to lower frequencies as the solid ap-
proaches mechanical instability [8, 9].

All of these results focus on eigenvalue statistics, for
good reason. Until recently, eigenvector statistics for gen-
eral random matrices have been poorly characterized, ex-
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cept for the GOE, where they are given by the Porter-
Thomas distribution [18]. However, mathematicians have
now shown that the GOE is part of a large class of matri-
ces with “maximally delocalized,” eigenvectors, where no
eigenvector entry is larger than O(

√
N) andN is the linear

size of the matrix [26,27]. In addition, a few studies [28–30]
have characterized eigenvector statistics for more compli-
cated matrices using fitting functions or superpositions of
Porter-Thomas distributions, although they did not ob-
serve universality.

In this Letter, we use random matrices to provide a
more robust definition of the boson peak in disordered
solids, identify a set of minimal requirements necessary to
generate this feature, and describe how the boson peak
changes with coordination number. We first show that
eigenmodes in the boson peak of jammed solids have a
universal structure, and that the onset of universality oc-
curs at a frequency ω∗ that scales with the pressure p1/2,
precisely as predicted by marginal stability arguments for
the boson peak [31, 32]. This suggests a new definition of
the boson peak based not on comparison of the vibrational
spectrum to Debye scaling, but rather on the eigenvector
statistics.
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Fig. 1: Universality of eigenstatistics for jammed pack-
ings (a) Eigenstatistics as a function of eigenvalue frequency
ω for a jammed packing at a pressure of p = 10−1.4. The green
line (right axis) indicates the the density of states D(ω). The
solid line (left axis) is the L2 difference between P (ℓ̃)|ω and
the universal distribution PGW (ℓ̃) (black dashed line in panel
(a)). (b) The L2 difference between P (ℓ̃) and PGW (ℓ̃) collapses
as a function of the rescaled variable ωp−1/2. Different lines
correspond to different pressures logarithmically spaced from
p = 10−1.4 (dark blue line) to p = 10−4.2 (light pink line).

In addition, we identify a large class of dense random
matrices, which includes ERM as a subset, that all pos-
sess a band of eigenvectors with this same universal struc-
ture. We demonstrate that the eigenvector statistics for

this class are not maximally delocalized, so that this class
of matrices is distinct from the previously identified en-
semble of matrices with maximally delocalized eigenvec-
tors [26, 27]. We conjecture that these matrices comprise
a new universality class that we call the Boson Peak (BP)
ensemble. To understand the role of coordination number,
we also study a class of sparse matrices – the Sparse Boson
Peak (SBP) ensemble–and demonstrate that their eigen-
vector statistics converge rapidly to the universal BP dis-
tribution as the number of non-zero entries increases. Fi-
nally, we demonstrate that one member (diagonally dom-
inant or DD matrices) of the SBP ensemble reproduces
the scaling of the boson peak frequency with coordination
number seen in jammed packings. Taken together, these
results indicate that the boson peak is generated by the
interplay between disorder and translational invariance,
and provide a simple explanation for the universality of
the boson peak in glasses.
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Fig. 2: Cumulative distribution functions for eigenvec-
tor statistics. Solid lines are for individual vibrational modes
of a jammed packing at z = 4.3 at two different frequencies
above ω∗ = 1.16: ω = 1.17(red), 1.28(green), in the boson
peak of a model 2D jammed solid. Dashed line is for the GW
ensemble (PGW (ℓ̃)) defined in the main text, and dotted blue
line is the analytic result for the Gaussian Orthogonal Ensem-
ble (GOE). (Inset) A real-space representation of a vibrational
mode from the boson peak in a jammed solid.

Our starting point is the dynamical matrices of jammed
packings. Each eigenvalue E corresponds to a vibrational
frequency ω ∼

√
E. For solids, the density of vibrational

states D(ω) follows the Debye scaling ωd−1 expected for
acoustic modes at the lowest frequencies. Above a charac-
teristic boson peak frequency ω∗, the spectrum no longer
obeys Debye scaling. Below ω∗, there is a population of
modes that are quasi localized hybridizations of localized
excitations with extended phonon-like modes [17,33]. Just
above ω∗ the modes are extended and disordered, and
at the highest frequencies near the band edge they are
completely localized [10, 17]. The green line (right axis)
in Fig 1(a) is a plot of the density of states D(ω), with
ω∗ ∼ 1.16, averaged over 500 simulated particle packings
at a pressure of 10−1.4 ∼ 0.04. Each packing consists of
512 mechanically stable bidisperse harmonic soft disks in
2D [34], with eigenstatistics calculated by diagonalizing
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the dynamical matrix of linear size N = 2 × 512 = 1024.
Lengths are in units of the average particle diameter and
energies are in units of the harmonic spring constant.
The inset to Fig 2 illustrates the spatial organization of

a typical vibrational mode near ω∗. This mode is extended
and heterogeneous with vortex-like features predicted by
a variational argument near isostaticity [35]. The spatial
pattern of each mode is defined by the set {ℓi,α}, where ℓi,α
is the magnitude of the polarization vector (the displace-
ment of particle α in eigenvector i) and varies drastically
from mode to mode in the boson peak.
Remarkably, however, the probability distribution func-

tion for the magnitudes ℓα is nearly identical for different
modes in the boson peak. We focus on the cumulative
distribution function (cdf) PBP (ℓ̃), where ℓ̃ is the normal-
ized magnitude ℓ

√
N . The solid lines in Fig 2 illustrate

the cumulative distribution for several individual modes
near ω∗.
To quantify and study this universality, we first iden-

tify a universal cdf PGW (ℓ̃) that closely approximates
eigenmodes with frequencies near ω∗, shown by the black
dashed line in Fig 2. Rather than averaging over many
boson peak modes, we generate this distribution from an
ensemble of simple random matrices, as discussed in detail
below. For the remainder of this Letter, all cumulative dis-
tributions shown are for matrices of linear size N = 1024
(jammed model solid) or N = 1000(random matrices),
averaged over 20 modes in the same frequency window to
reduce numerical fluctuations due to finite system size.
The difference between each boson peak cdf PBP (ℓ̃)

and the universal distribution PGW (ℓ̃) is quantified us-
ing the L2 norm

∫

(PBP − PGW )2dl. The blue line (left
axis) in Fig 1(a) shows this L2 norm as a function of
frequency. Phonon-like modes at low frequencies and
Anderson-localized modes at high frequencies are very dif-
ferent from the universal distribution and have large L2

differences. In contrast, there is a broad minimum in the
L2 norm near ω∗ ∼ 1.16, corresponding to a large band of
modes with the same universal structure near the boson
peak. Fig 1(b) is a plot of the low-frequency behavior of
this L2-norm for packings at different pressures p. The
location of the minimum collapses when ω is rescaled by
p1/2, indicating that onset of universality in eigenmodes
(the minimum in the L2 norm) occurs at a frequency
ω∗ ∼ p1/2. This is the scaling associated with the boson
peak for harmonic disks [31, 32, 36]. Our results therefore
suggest a new definition of the boson peak frequency based
on eigenvector statistics: the boson peak frequency is the
frequency at which the polarization vector magnitude dis-
tribution is closest to the universal distribution PGW , so
that the L2 difference between the two distributions is at
a minimum.
The obvious remaining question is the origin of the ob-

served universality. To understand the surprising simi-
larity in the eigenvector statistics for these modes, we
turn to random matrices. We first compare the boson
peak eigenvector statistics to those for the GOE. Because

each displacement magnitude in a boson peak mode from
a 2D jammed solid is the vector sum of two mode en-
tries, we use PGOE(ℓ̃) = (1 − exp(−ℓ̃2/2)), the Porter-
Thomas distribution for a GOE eigenvector {ℓα} where
pairs of components ℓα, ℓα+1 have been vector summed:
ℓ̃α̃ =

√

(ℓ2α + ℓ2α+1). This is shown as the blue dot-
ted line in Fig. 2. While it is close to the distribu-
tions for the boson peak modes, there are clearly system-
atic deviations. The difference between the boson peak
and the GOE cdf distributions is quantified using the L2

norm
∫

(PBP − PGOE)
2dl, and corresponds to the first

hatched box in Fig 3(b). Thus, although the GOE re-
sults are consistent with the eigenvalue statistics of the
boson peak [10, 17], the GOE fails to capture the eigen-

vector statistics.
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Fig. 3: (a) Eigenstatistics as a function of eigenvalue energy
E for the GW ensemble. The dotted line indicates the peak
in the density of states at Ē = 0. The solid line (left axis) is
the L2 difference between P (ℓ̃)|E and P (ℓ̃)|Ē=0. The dashed
line (right axis) is the density of states. (b) L2 distance be-
tween eigenvector statistics P (ℓ̃)|Ē for different random ma-
trix ensembles, as defined in the text. DD6 is the diagonally
dominant ensemble with z = 6. Hatched bars compare boson
peak modes in jammed packings to random matrix eigenvec-
tors, solid bars compare GW to other ensembles. Error bars
indicate the average L2 difference between two members of the
same ensemble.

One obvious difference between GOE matrices and dy-
namical matrices lies in the statistics of the on-diagonal
elements. Because the potential energy of jammed pack-
ings only depends on differences in the displacements
of interacting particles, the dynamical matrix is trans-
lation invariant. As a result, diagonal elements, which
correspond to self-interaction terms, obey a sum rule:
Mii = −∑

j 6=i Mij . The sum rule can be imposed on
a random matrix, as it is for Euclidean random matrices.
Here, we explore whether the sum rule is essential by inves-
tigating a class of symmetric Wigner matrices [27], which
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do not obey the sum rule, but whose diagonal elements
have similar statistics. We will refer to this ensemble as
the Gaussian Wigner (GW) ensemble.
Specifically, the GW ensemble consists of symmetric

matrices with linear size N , where the off-diagonal el-
ements are independent random variables taken from a
Gaussian distribution with mean µ and variance σ2, and
the on-diagonal elements are independent and Gaussian
distributed with mean −Nµ and variance Nσ2. We refer
to this condition on the on-diagonal elements as a gener-
alized translational invariance constraint.
The dashed line in Fig 3(a) shows the density of eigen-

values D(E) for the GW. The peak in the density of states
occurs at Ē = 0 and the cdf corresponding to that eigen-
value, PGW (ℓ̃)|Ē=0, is the black dashed line in Fig. 2. In
contrast to the GOE, eigenvectors in the GW ensemble
vary with the eigenvalues {E}. The solid line in Fig 3(a)
compares the cdf for eigenvectors at various values of E to
PGW (ℓ̃)|Ē=0. The L2 difference is large where D(E) falls
off sharply, indicating modes that are highly localized at
the band edge and different in character from those at Ē.
However, there is a well-defined band of modes in the

middle of the spectrum (near Ē) that each possess the
same universal eigenvector distribution. We find that this
distribution PGW (ℓ̃)|Ē ≡ PGW (ℓ̃) does not depend on our
choice for µ or σ or the linear matrix size N . Fluctu-
ations from eigenvector to eigenvector are quantified by
the L2-distance between cumulative distributions for an
individual eigenvector and for the average over 20 eigen-
vectors centered around Ē; these decrease approximately
as 1/

√
N . Thus, each individual eigenvector in the middle

of the spectrum approaches the same well-defined limit-
ing distribution, which we call the BP distribution, in the
thermodynamic limit. Finally, we compare the BP dis-
tribution to the cumulative eigenvector distribution for
modes at the boson peak of jammed packings. The sec-
ond hatched box in Fig. 3(b) shows that the two distri-
butions are nearly identical, suggesting that the modes of
the boson peak in jammed packings are very similar to
eigenvectors near Ē in the GW ensemble. This validates
using PGW (ℓ̃) to approximate the universal distribution
for jammed packings in Fig. 2.
The fact that the eigenvector statistics for the GW en-

semble are distinct from those of the GOE is surprising,
because it has been proven that a large class of Wigner
matrices have maximally delocalized eigenvectors, just like
the GOE [26, 27]. Our GW ensemble does not satisfy the
assumptions of the proof because the variance of the on-
diagonal elements grows linearly with the system size N
and is therefore unbounded in the thermodynamic limit.
A natural question is whether these results depend on

the underlying distribution for the random matrix entries.
Therefore, we study other Wigner matrix ensembles where
off-diagonal entries are chosen from a distribution pµ,σ(x)
with finite first (µ) and second (σ) moments, while the on-
diagonal elements are Gaussian distributed random vari-
ables with mean −Nµ and variance Nσ2. We denote ma-

10
−1

10
0

10
1

10
−4

10
−2

ω

D
( ω

)
 

 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

l

P
(<

 l
 )

 

 

2 4 6 8
0

0.2

0.4

0.6

0.8

z

L
2

 

 

decreasing z

decreasing

 z

a

b

10
−1

10
0

10
1

10
−1

10
0

10
1

 z −z c

ω
*

Fig. 4: (a) Eigenvector statistics P (ℓ̃) for sparse DD matri-
ces at different values for the average coordination number z

(dotted = 1000, long dash=6, short dash = 3.5, solid = 2.1).
(inset) L2 distance as a function of z−zc for SGW (dashed line)
and DD (solid line) matrices. (b) Density of states for diag-
onally dominant (DD) random matrix ensembles captures the
shift in the boson peak location to lower frequencies as average
coordination number z decreases (short dash = 3.5, dotted =
3, dash-dot=2.5, solid = 2.1).(inset) Blue squares indicate the
frequency of the boson peak ω∗ as a function of δz = z − zc.
Red dashed line is best fit to lowest 5 points with slope 0.94.

trices with p(x) = 1/d ∈ [0, d] as Uniform Wigner (UW),
and those with p(x) = A exp((x − µ1)/σ

2
1 + B exp((x −

µ2)/σ
2
2 as Double Gaussian Wigner (DGW). As shown by

Fig 3(b), both of these matrix ensembles are indistinguish-
able from GW and belong in our proposed universality
class. For N = 1000 their difference is L2 = 0.0058 and
L2 = 0.0099, respectively, which are the same order as the
average L2 difference between distributions for different
members of GW ensemble.

We expect that random matrices constructed in this
manner from any continuous distribution p(x) with finite
first and second moments will be characterized by having
the same eigenvector distribution function. Thus, we con-
jecture that these matrices belong to a universality class,
which we will call the Boson Peak (BP) ensemble, charac-
terized by the universal BP eigenvector distribution at Ē,
the peak in their density of states.

We note that Ē is different from the boson peak fre-
quency ω∗. While ω∗ is typically identified as the lowest
frequency at which a solid’s vibrational spectrum deviates
from Debye scaling – i.e. the low-frequency edge of a band

p-4



A random matrix definition of the boson peak

of boson peak modes – Ē is the average vibrational energy
for that band of modes. In fact, we find that over 30 % of
the vibrational modes in jammed packings have statistics
that are indistinguishable (L2 < 0.02) from the universal
GW distribution, quantifying our intuition that there is
very large band of extended, disordered BP modes that
begins at ω∗ and extends far into the spectrum.
We now consider a class of matrices that explicitly

obey the sum rule required for translation invariance, so
that the off-diagonal elements are Gaussian distributed
and the on-diagonal elements are the negative sum of
the off-diagonal elements in each row. We denote these
as MERM, because they are the mean-field (or infinite-
ranged) limit of a Euclidian random matrix ensemble with
Gaussian interaction potentials [22]. The sum rule leads
to strong correlations between matrix elements within a
row. As a result, these ensembles exhibit one zero-energy
eigenvector with identical entries. This corresponds to a
uniform displacement associated with global translation
invariance. Eigenvector statistics for the remaining N − 1
modes are indistinguishable from those in the GW ensem-
ble, as shown in Fig. 3(b), and so MERM matrices belong
to the proposed BP universality class.
So far, we have considered dense random matrix en-

sembles where all off-diagonal elements are drawn from a
continuous distribution. In contrast, the dynamical ma-
trix of a jammed packing is sparse, with an average of only
z = zd nonzero off-diagonal elements in each row, where
d is the dimensionality and z is the number of interacting
neighbors per particle. We therefore study two ensembles
of sparse random matrices.
The first sparse ensemble possesses z nonzero off-

diagonal elements per row chosen from the distributions
characterizing the GW ensemble and is denoted SGW.
As shown by the dashed line in the inset to Fig. 4(a),
the eigenvector statistics for sparse matrices depend on
z. However, the distributions converge rapidly; those for
z=6 and z = N=1000 are nearly indistinguishable. This
explains why the boson peak modes for 2D jammed pack-
ings (with 〈z〉 = 5.1 and 〈z〉 = 10.2) are so close to the
universal distribution with z = N = 1000, as shown by
the second hatched box in Fig 3(b). The modes of the bo-
son peak of jammed packings approach the universal BP
distribution in the large z limit.
To ensure mechanical stability, the dynamical matrices

for jammed packings are positive definite, but the random
matrix ensembles we have considered so far are not. This
demonstrates that the eigenvector statistics – i.e. the bo-
son peak mode structure – do not depend on mechanical
stability. However, none of these random matrices cap-
tures the location of the boson peak (at an eigenvalue E∗

and frequency ω∗ =
√
E∗) that is intimately related to

mechanical stability [9, 31, 36, 37].
To capture the boson peak frequency, we turn to a

sparse positive definite ensemble known as symmetric Di-
agonally Dominant (DD) matrices, which we generate as
follows. First, we populate an integer number ζi of off-

diagonal entries in each row i such that there is an average
〈ζi〉 = z/2 entries in each row. These nonzero entries are
random variables chosen from a uniform distribution on
the interval [−1, 0]. To obtain a symmetric matrix, this
matrix is added to its transpose so that the average coor-
dination number is z. Finally, the diagonal elements are
the negative sum of the off-diagonal entries in the same
row. One can show that random matrices constructed in
this manner are always positive definite [38], and therefore
each eigenvalue E corresponds to a frequency: ω =

√
E.

Just as in theMERM ensemble, we have introduced strong
correlations within a row to maintain positive definiteness.
We study the behavior of the eigenvector statistics and

density of states for DD matrices as a function of their
average coordination number. As shown by Fig. 4(a) the
eigenvector statistics quickly approach the universal BP
distribution at large z. Therefore dense DD matrices be-
long to the BP universality class. To compare to the dy-
namical matrix for jammed packings, we note that in the
latter systems a sum rule must be enforced separately in
each direction, which means that each row contains d sub-
blocks (one per dimension), and the sum rule relating the
diagonal elements to the sum of off-diagonal elements must
be obeyed within each subblock. Because the DD matri-
ces in our proposed universality class obey only one sum
rule, they are effectively one-dimensional and the aver-
age number of nonzero off-diagonal elements in a row, z,
is the same as the number of neighbors per particle, z.
Thus, the critical coordination number for isostaticity is
zc=zc=2d=2.
Note that the L2-distance between the DD eigenvec-

tor statistics and the BP distribution increases rapidly as
z → 2. Thus, the BP distribution fails to describe modes in
the double limit ω → ω∗ and z → 2 in this one-dimensional
case. However, Fig 1(b) shows that the BP ensemble pro-
vides an excellent description in the same double limit in
two dimensions (where zc = 4, zc = 8) since packings at
low p have values of z near zc. The large values of L2 near
z=2 therefore appear to result from the fact that z=2 is
simply too far away from the mean-field, large z limit.
In the DD ensemble the density of modes D(ω) drops off

rapidly below a characteristic frequency ω∗ that depends
on the coordination z, as shown in Fig. 4(b). The inset to
Fig. 4(b) demonstrates that ω∗ (defined as the lowest fre-
quency at which D(ω) attains half of its maximum value)
scales linearly with δz = z−zc. This is precisely the scaling
seen in jammed packings [36].
In summary, our results demonstrate that dense random

matrices of linear size N , where the on-diagonal elements
have a variance N times larger than the off-diagonal el-
ements, possess a universal eigenvector structure at the
peak in their spectrum, the BP distribution, that is dis-
tinct from the standard GOE Porter-Thomas distribution.
Furthermore, sparse random matrices with coordination z,
where on-diagonal elements have a variance z times larger
than the off-diagonal elements, rapidly approach this uni-
versal distribution as z increases. For d ≥ 2, the boson
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peak modes are well-described by the BP distribution and
are therefore a generic result of disorder and global trans-
lation invariance.

Interestingly, matrices with entries from discrete prob-
ability distributions do not appear to be in the same uni-
versality class – Zippelius and co-workers [19] have shown
that adjacency matrices (where off-diagonal elements are
either one or zero) possess discrete jumps in the density
of states with corresponding localized eigenvectors.

In addition, our results demonstrate that at frequen-
cies below ω∗, eigenvectors begin to depart from universal
behavior, and modes corresponding to structural flow de-
fects begin to appear [6]. Finally, our results corroborate
previous work demonstrating that the frequency at which
the boson peak occurs is closely related to mechanical sta-
bility. By decreasing the coordination number towards
isostaticity in our DD ensembles, we recover the charac-
teristic scaling of the boson peak frequency with contact
number seen in jammed packings.

Many real glassy solids interact via long-ranged poten-
tials. As a result, their dynamical matrices are more dense
than those of jammed packings but still obey the sum rule.
Network glasses or metallic glasses likewise must obey the
sum rule and yet are disordered. Our random matrix anal-
ysis indicates that the dynamical matrices of all these sys-
tems should belong to the BP ensemble so all of these
disordered solids should exhibit boson peaks–a band of
modes characterized by the BP distribution.

Thus, our analysis suggests an explanation for the exis-
tence of boson peak modes in glassy solids that is comple-
mentary to that of Wyart, et al. [31]. We expect to see a
band of boson peak modes in any disordered material for
the same reason we expect to see a universal distribution
of mode frequencies – it is a necessary consequence of the
interplay between disorder and translational invariance.
The frequency of the boson peak, on the other hand, is
much more sensitive to isostaticity and sparseness of the
random matrix.
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